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A simple, theoretically-based, method is presented for calculating coefficients 
of thermal conductivity of multicomponent mixtures of gases of elevated density. 

It was shown earlier in a series of papers [1-4] that the Enskog-Tarn theory [5] of 
binary mixtures of solid spheres and its generalization to multicomponent mixtures [6] 
furnish a basis for working out an approximate description of the compositional dependence 
of transfer coefficients of nonpolar gases. Important in this respect is a definition of 
an effective diameter of a solid sphere and the so-called pseudoradial distribution func- 
tions. 

In the framework of the modified Enskog theory effective diameters may be calculated 
from values of the second virial coefficients and their thermal derivatives. The pseudo- 
radial functions of the distribution of components are obtained from experimental data for 
transfer coefficients With the aid of the Enskog equations. Following this, the mixed 
pseudoradial distribution functions are calculated from the combined relations [1-4]. In 
this regard, difficulties may arise associated with the nonphysical behavior of the pseudo- 
radial distribution functions for large densities. This may be explained by the fact that 
the Enskog theory does not account for the effects of correlated molecular motion [7]. The 
authors of [8] have proposed a method for determining the pseudoradial distribution func- 
tions by splicing together two branches of the solution at the minimum point of the ratios 

or 

In the present paper we examine a version in which the pseudoradial distribution func- 
tions are replaced by known radial distribution functions [6] corresponding to the Mansoori, 
Carnahan, Starling, Leland (MCSL) equation of state for mixtures of solid spheres [9, I0]. 
Thus, there remains only the problem of determining the effective diameter of a solid sphere. 

As usual, the thermal conductivity coefficient may be divided into two terms, taking 
into account translational energy transfer and internal degrees of freedom. The contribu- 
tion of the translational degrees of freedom may be determined by a method proposed by the 
authors in [4]. The contribution of the internal degrees of freedom may be calculated with 
the aid of the Aiken-Hirschfelder formula. 

We illustrate by calculating the thermal conductivity coefficient for mixtures of hel- 
iuar-neon, neon-argon-krypton, and nitrogen-oxygen (air) for a temperature of 300 K. Deviation 
of the results of our calculations from experimental data are within 27. for the heliunr-neon 
mixture [2], 47, for the neon-argon-krypton mixture [ii]. For air the maximum deviation from 
the data [12] amounts to 107. up to pressures around 700 bar. 

I. Method of Calculation. The approximate formula obtained by the author [4] for the 
thermal conductivity coefficient of dense multicomponent mixtures of monatomic gases has the 
form 

v 

where 
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The quantities ~ii, appearing in formulas (2) and (3), are determined in terms of the diame- 
ter o of the soli~ spheres o [13]: 

~'. - ~'i = ---if-b~ ----- - - s  b .  = - '3-  - 'g-~a~ , 
( 4 )  

5 " Y I Z -  . '  
I 

<hs = T (~* + ~:)' (5)  

~ij = X--ji are the pseudoradial distribution functions for molecules of kinds i and j in  the 
presence of molecules of all the other components in the mixture. 

Formula (i) was obtained assuming the nondiagonal elements of the matrix to be srlall in 
comparison with the diagonal elements (see [4] ). It contains the whole class of approximate 
formulas depending on the parameters G~j~. Selecting these in various ways, we can obtain 

different approximate formulas. Thus, if we specify Gilj in the Maison-Saxson form 

[ 5 (6mz--5mj)]+8m~m~ A* o (6 )  
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where 
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we then have a generalization of the well-known Maison-Saxson formula to the case of dense 
gas mixtures. The quantities ATj and B~j represent dimensionless ratios of collision inte- 

grals, equal to one for solid spheres and close to one for other types of interaction~ 

To calculate the coefficient of thermal conductivity from formula (i), it is necessary 
to specify the molecular masses mi, the effective diameters o i of the solid spheres, the 
thermal conductivity coefficients %~_of components with small density, as well as the nixed 
pseudoradial distribution functions Xijo 

In [1-4] the functions ~ij are determined from the functions Xi for the noble compgn- 
ents. The latter in turn may be calculated from experimental data for coefficients of 
thermal conductivity (viscosity). 

In the present paper, instead of the pseudoradial distribution functions ~ij, we ise 
the known radial distribution functions gij corresponding to the equation of state for mix- 
tures of solid spheres [9, i0]: 

ZMCSL = ] .j_ ~_~ ~Z__~a - -  ~[3(t~.3f_ [ ~ ) _ _ ( t  t +[2)~21 ( 8 )  
(I - -  ~)~ (1 - -  ~)~ ' 

where 

, h~h; ( 9 )  

t ~ = l  X ~ . E ~ ;  6 =  Z_ ~.Xz.._ 2~ 2;2 3 
X~ X~ E---~2 ; t~ = ---2-" (10)  

The radial distribution functions gij in contact, corresponding to equation (8), may b~ 
written in the form [6]: 
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In calculating the thermal conductivity coefficient of a mixture of monatomic gases, the 
contribution l(mon) of the translational degrees of freedom may be determined from equation 
(I). The contribution k(int) of the internal degrees of freedom may be calculated with the 

(12)  

aid of the Aiken-Hirschfelder formula [2]: 

k (int) = ~ k~ - -  )~i (mon) i q- "~ xj go  

2. Computational Results and Disc ussio ~. According to the method presented in this 
paper, the solid sphere effective diameters may be calculated from experimental values of 
the thermal conductivity coefficients of the components at high density. From the condition 
for coincidence of minima of the quantity X/(k~ also given experimentally by the Enskog 
formula 

~ '  -- 1 Pb~( 8~ 1 ) 
.0 - - -  ( 1 3 )  ~ 8~ ~ - } - 1 . 2 + 0 . 7 5 7 p b ~ % ~ ,  

8, = k/~ (mon), ,%~ (mon) -- 15 R o 
' 4 M~ ~t ,  

where 

it follows that 

( ~ ~ 8~ 
b,= [~ip J~,. 1 . 2 + 2 ~ % ,  (14 )  

Here the quantity Xi/(X~p ) may be considered as a function of the density at some tempera- 
ture, 

A choice for an effective diameter of a solid sphere, in accordance with formula (14), 
is, generally speaking, not uniquely possible. If the coefficients of viscosity of compon- 
ents of the mixture for small density are known, the effective solid sphere diameter can be 
selected so as to obtain an experimental value for the viscosity coefficient q~ of a rare- 
fied gas in accordance with the expression: 

In  t h i s  c a s e ,  a s  shown in  [ 1 4 ] ,  t h e  Enskog t h e o r y  y i e l d s  s a t i s f a c t o r y  v a l u e s  (• f o r  t h e  
t r a n s f e r  c o e f f i c i e n t s  o f  monatomic  n o b l e  g a s e s  f o r  t h e  d e n s i t i e s  bp < 0 .4  c i t e d .  

In  [15] t h e  Van d e r  Waals a p p r o a c h  was u s e d  t o  s t u d y  t r a n s f e r  p r o p e r t i e s  i n  d en se  g a s e s .  
The t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  e f f e c t i v e  s o l i d  s p h e r e  d i a m e t e r  o b t a i n e d  by t h e  a u t h o r s  
makes i t  p o s s i b l e  t o  c a l c u l a t e  t r a n s f e r  c o e f f i c i e n t s  o f  i n e r t  g a s e s  f rom t h e  Enskog t h e o r y  
w i t h  an e r r o r  o f  l e s s  t h a n  10% ( f o r  t e m p e r a t u r e s  and d e n s i t i e s  l a r g e r  t h a n  c r i t i c a l ) .  

TABLE i. Thermal Conductivity Coefficient of Helium-Neon 
Mixture, mW/(m-K) 

r 

0 
1 
2 
3 
,4 
5 
6 
7 
8 
9 

x1=0,t82 

[4] 

60,60 
60,98 
61,41 
61,90 

161,42 
) 62,97 
163,52 
164,13 
164,78 
65,45 

this  
[2] I papez 

60,0 60,61 
61,0160,97 
61,5t61,37 
62,0/61,79 
62,7162,23 
63,0! 62,71 
64,0 t 63,21 
64 5t 63,74 
65;0164,29 
65'5164'88. 

x1=0,41 

[4] [2] 

79,40 
79,74 
80,10 
80,53 
80,99 
81,52 
82,08 
82,64 
83,24 
83,89 

this 
paper 

x~0,586 

[41 

I rg,0 79,421 96,76 
b79,3 79,76j 97,1s 
L80,O 80,14 t 97,65 
180,5 80,541 98, 13 
89,99 80,97i 98 69 

:81,3 81,42 t 99,34 
82,0 81,9t]100,0 

82,5 82,43it00,6 
82,97t101,3 

83,083,7 83,55 102,2 

[2] 
this 
paper 

xi=0,788 

[4] ] [21 

94,5 96,77 
95,0 97,23 
95,5 97,7 
96,0 98,2; 
96,6 ] 98,71 
97,0 } 99,3~ 
98,0 ~ 99,9i 
98,0 !00,6 
98,5 IoO : 
99,5 

122,2 121,5 
122,8 i22,0 
123,41 i22,8 
124,4 t 123,5 
125,1 I 124,3 
126,0 ] 125,3 
t26,9 ~ 126,2 
127,9 / 127,0 
128,9 t 127,9 
130,1 I 128,8 

1 

this 
paper 

122,3 
123,0 
123,8 
124,6 
125,4 
126,3 
127,3 
128,3 
129,3 
130,4 
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TABLE 2. Thermal Conductivity Coefficient of Neon- 
Argon-Krypton Mixture, mW/(m'K) (XNe = 0.4887; XAr 
= 0.2565; XKr = 0.2548) 

P, 
MPa 

0,595  
1,08 
1,58 
2, 10 
2,63 
.3, 10 

P, 
ole/ 

0,0000 
0,2399 
0,4335 
0,6341 
0,8395 
1,053 
1,241 

expt. 
[ill 

24,97 
25, 10 
25,24 
25,39 
25,47 

calc. 

25,65 
25,70 
25,76 
25,81 
25,86 
25,92 
25,98 

P, 
NPa 

3,61 
4, 15 
4,61 
5,15 
5,64 
6, 17 
6,90 

P, mk~ole/ 

I i  446 
,665 

1,847 
2,059 
2,26I 
2,474 
2,759 

e t .  

25,63 
25,78 
25,90 
25,98 
26,13 
26,23 
26,47 

calc. 

26,04 
26,11 
26, 16 
26,23 
26,30 
26,38 
26,48 

TABLE 3. 

P, MPa 

2,473 
4,929 
7,390 
9,884 

12,42 
15,04 
17,76 
20,63 
23,67 

Thermal Conductivity Coefficient of Air, mW/(m'K) 

p, kmole/m a 
[4] 

26,02 
27, 18 
28,54 
30, O0 
31,64 
33,41 
35,31 
37,35 
39,50 
41,76 

[12] 

26,31 
27,58 
28,93 
30,11 
31,96 
33,69 
35,4~ 
37,35 
39,41 
41,62 

this paper 

25,99 
26,51 
27, 18 
28,01 
29,01 
30,21 
31,61 
33,25 
35, 16 
37,36 

P, MPa 

26,92 
30,48 
34,31 
38,55 
43,23 
48,47 
54,37 
60,98 
68,46 
77,05 

p,  kmole/m a 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 

[4] 

44,19 
46,73 
49,41 
52,25 
55,23 
58,39 
61,80 

[121 

43,93 
46,55 
49,30 
52,28 
55,48 
58,94 
62,72 
66,78 
71,15 
75,99 

this paper 

39,88 
42,76 
46,04 
49,76 
53,99 
58,78 
64,20 
70,33 
77,25 
85,08 

If the second virial coefficient and its thermal derivative are known for all compon- 
ents of the mixture, the effective diameters can then be chosen according to the modified 
Enskog theory [14, 16]: 

dB~ 
b~= B i - l - T - -  (16)  

dT 

Cho ice  o f  an e f f e c t i v e  d i a m e t e r  in  a c c o r d a n c e  w i t h  e x p r e s s i o n  (16)  i s  t h e  c h o i c e  most  
p r e f e r r e d  s i n c e  i t  does  n o t  r e q u i r e  knowledge  o f  t h e  t r a n s f e r  c o e f f i c i e n t s  o f  componer t s  a t  
h i g h  d e n s i t i e s .  I n  t h i s  c o n n e c t i o n ,  however ,  no uppe r  l i m i t  w i t h  r e s p e c t  t o  d e n s i t y  ~s 
known; meanwhi l e ,  in  u s i n g  r e l a t i o n  ( 1 4 ) ,  we can t a k e  as  such  an uppe r  l i m i t  t h e  d e n s i t y  a t  
t h e  minimum p o i n t  o f  t h e  q u a n t i t y  h / ( h ~  ( o r  ~ / ( ~ 0 p ) ) .  

To i l l u s t r a t e  a p p l i c a b i l i t y  o f  t h e  p r o p o s e d  method o f  c a l c u l a t i o n  t o  r e a l  gas  m i x t u r e s ,  
we c a l c u l a t e d  t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t s  f o r  m i x t u r e s  o f  monatomic g a s e s :  h e l i u m -  
neon ,  n e o n - a r g o n - k r y p t o n ,  and t h e  m i x t u r e  0 .78  N 2 + 0 .2202 ( a i r )  a t  t e m p e r a t u r e  300 K. Choice  
of this last mixture as a substitute for air is justified by the small fraction of argon and 
carbon dioxide gas present in its makeup, and also by the approximate nature of the whole 
theory. 

Tables 1 and 2 furnish a comparison of the results of our calculations with data of 
other authors for mixtures of monatomic gases; Table 3 gives a comparison with generalized 
data [12] for air. A comparison is also given of calculated values of the thermal conJuc- 
tivity of an Ar-CF4 mixture with experimental data from [17]. The maximum deviation amounts 
to 11%. 
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As might be expected, the proposed method, based on the Enskog-Tarn theory for mixtures 
of solid spheres, yields more precise results in the case of mixtures of monatomic gases. 

NOTATION 

p, density; m, molecular mass; xi, mole fraction of i-th component; ~, number of com- 
. o . �9 ~ 0 , ~ 

ponents of mlxture; ~, thermal conductlvlty coefflclent; %i~' thermal conductlvlty coeffic- 
ient of rarefied gas with molecular mass 2mimj/(m i + mj). ~uperscript 0 indicates rarefied 
gas quantity; subscripts indicate numbering of mixture components. 
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COMMENTS ON DESIGNING A DIAPHRAGMLESS REACTOR 

FOR THE PRODUCTION OF ELECTROLYTIC HYDROGEN 

A, G. Shashkov, P. G. Khramtsov, 
I. I. Bortnikov, and N. P. Matveiko 

UDC 621.357 

Criterial relations generalizing the functional interrelationship between a num- 
ber of dimensionless complexes of hydrodynamics and voltage in a reactor cell 
are obtained from the differential equations that describe the electrochemical 
process. 

Hydrogen is becoming increasingly importantwith each year as an energy carrier and a 
raw material for many branches of industry. A potential demand for it in the near future 
may come from the microbiological industry, where hydrogen is used as a raw material for the 
production of feed protein, and in the future will perhaps be used to produce protein for 
human consumption [i, 2]. Although they are profitable, however, existing methods of pro- 
ducing hydrogen, particularly chemical methods, cannot satisfy the demand of this branch of 
industry for high-quality hydrogen. In this respect much attention should be focused on the 
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